Using WebScript

This chapter provides an overview of WebScript, the WebObjects scripting
language. The chapter includes the following major sections:

¢ “T'he WebScript Language” describes basic WebScript language syntax.

o “Using WebScript in a WebObjects Application” describes using WebScript
within the context of a WebObjects application. This section uses a simple
example application to explain the issues that arise in creating a WebObjects
application, as well as special WebObjects features.

e “WebScript LLanguage Summary” provides a reference to the WebScript
language.

For a detailed discussion of the structure of a WebObjects application, see the
chapter “Getting Started.”

The WebScript Language

"This section describes WebScript language features and syntax. For a complete
WebScript example and a discussion of how scripts operate within the larger
context of a WebObjects application, see the section “Using WebScript in a
WebObjects Application.”

Declaring Variables

"To declare a variable in WebScript, use the syntax:

id myVar;
id myVarl, myVar2;

A value can also be assigned to a variable at the time it is declared:
id myVar3 = 77;

WebScript only supports one data type: objects (ids).

The id Data Type

The id type is defined as a pointer to an object—in reality, a pointer to the
object’s data (its instance variables). Liike a C function or an array, an object is
identified by its address. All objects, regardless of their instance variables or
methods, are of type id.

Using WebScript

The WebScript Language

Making Assignments

T'he basic syntax for making assignments in WebScript is straightforward:
myVar = aValue ;

The value you assign to a variable can be either a constant or another variable.
For example:

/I assign another variable to a variable
myVar = anotherVar;

[assign a string constant to a variable
myString = @"This is my string.";

"T'he syntax myString = @"This is my string"; is a way of creating instances
of the class NSString. For more discussion of this syntax, see the section
“Creating Constant NSStrings, NSArrays, and NSDictionaries.”

WebScript only supports one data type: objects (ids). However, if you assign a
literal integer or floating point value to a variable:

id mylnt = 167;

WebScript represents it as an NSNumber object. In this sense WebScript can be
said to support integers and floats.

Messaging in WebScript
"To get an object to do something in WebScript, you send it a message telling it

to perform a method. In WebScript, message expressions are enclosed in square
brackets:

[recerver message]

"The receiver is an object, and the message tells it what to do. For example, the
statement:

[aString length];

tells the object aString to perform its length method, which returns the string’s
length. Methods can also take arguments. For example, this statement:

[aString isEqual:anotherString];

tells the object aString to perform its isEqual: method, which takes another object
as an argument and tests it against aString for equality. A method can take
multiple arguments. For example the statement:

[aString insertString:anotherString atindex:3];

Using WebScript

The WebScript Language

inserts the characters of anotherString into aString at the specified index. Note that
the method name insertString:atindex: has two colons, one for each of its
arguments. The colons are preceded by keywords that describe their arguments
(for example, atindex: takes as its argument an integer representing an index).

One message can also be nested inside another. Here the description method
returns the string representation of an NSCalendarDate object myDate, which is
then appended to aString. The resulting string is assigned to newsString:

newString = [aString stringByAppendingString:[myDate description]];

"To give another example, here the array anArray returns an object at a specified
index. That object is then sent the description message, which tells the object to
return a string representation of itself, which is assigned to desc:

id desc = [[anArray objectAtindex:anindex] description];

Sending a Message to a Class

Most commonly, the object receiving a message is an instance of a class. For
example, in the statement:

[aString length];

the variable aString is an instance of the class NSString.

However, sometimes you send messages to a class. You send a class a message
when you want to create a new instance of that class. For example the
statement:

aString = [NSString stringWithString: @"Fred"];

tells the class NSString to invoke its stringWithString: method, which returns an
instance of NSString that contains the specified string. Note that a class is
represented in a script by its corresponding class name—in this example,
NSString.

The classes you use in WebScript include both class and instance methods.
Most class methods create a new instance of that class, while instance methods
provide behavior for instances of the class. The following example shows how
you use an NSString class method to create an instance of NSString, and then
use instance methods to operate on the instance myString:

/I Use a class method to create an instance of NSString
id myString = [NSString stringWithFormat:@"The next word is %@", word];

/I Use instance methods to operate on the instance myString
length = [myString length];
IcString = [myString lowercaseString];

Using WebScript

The WebScript Language

In a class definition, class methods are preceded by a plus sign (+), while
instance methods are preceded by a minus sign (-). You don’t define new classes
in WebScript, but you can take advantage of existing classes. For more
information, see the chapter “A Foundation for WebScript Programmers: Quick
Guide to Useful Classes.”

Creating Objects

There are two different ways to create objects in WebScript. The first approach,
which applies to all classes, is to use class creation methods. The second
approach applies to just NSStrings, NSArrays, and NSDictionaries. For these
classes WebScript provides a convenient syntax for initializing constant objects.

Using Creation Methods

All classes provide creation methods that you can use to create an instance of
that class. Depending on the class and the particular creation method, the
instances of the class you create might be either mutable (modifiable) or
immutable (constant). When you use creation methods to create NSStrings,
NSArrays, and NSDictionaries, you can choose to create either an immutable or
a mutable object. For clarity, it’s best to use immutable objects wherever
possible. Only use a mutable object if you need to change its value after you
initialize it.

Here are some examples of using creation methods to create mutable and
immutable NSString, NSArray, and NSDictionary objects:

/I Create a mutable string
string = [NSMutableString stringWithFormat:@"The string is %@", aString];

/I Create an immutable string
string = [NSString stringWithFormat:@"The string is %@", aString];

/I Create a mutable array
array = [NSMutableArray array];
anotherArray = [NSMutableArray arrayWithObjects: @"Marsha", @"Greg", @"Cindy", nil];

/I Create an immutable array
array = [NSArray arrayWithObjects:@"Bobby", @"Jan", @"Peter", nil];

/I Create a mutable dictionary
dictionary = [NSMutableDictionary dictionary];

/I Create an immutable dictionary

id stooges = [NSDictionary
dictionaryWithObjects:@("Mo", “Larry", "Curley")
forKeys:@("Stoogel", "Stooge2", "Stooge3")];

Using WebScript

The WebScript Language

Some classes only let you create either mutable or immutable objects. The
following examples show how you can create and work with NSCalendarDates,
which are always immutable:

/I Using the creation method date, create an NSCalendarDate instance
/I 'now' that contains the current date and time
now = [NSCalendarDate date];

/I Return a string representation of 'now' using a format string
dateString = [now descriptionWithCalendarFormat: @"%B %d, %Y"];

/I Using the creation method dateWithString:, create an NSCalendarDate

/I instance 'newDate' from 'dateString’

newDate = [NSCalendarDate dateWithString:dateString
calendarFormat: @"%B %d, %Y"];

/I Return a new date in which newDate's day field is decremented
date = [newDate addYear:0 month:0 day:-1 hour:0 minute:0 second:0];

For a detailed discussion of these classes and a more complete listing of
methods, see the chapter “A Foundation for WebScript Programmers: Quick
Guide to Useful Classes.”

Creating Constant NSStrings, NSArrays, and NSDictionaries

NSStrings, NSArrays, and NSDictionaries are the classes you use most often in
WebScript. WebScript provides a convenient syntax for initializing constant
objects of these types. In such an assignment statement, the value you’re
assigning to the constant object is preceded by an at sign (@). You use
parentheses to enclose the elements of an NSArray, and curly braces to enclose
the key-value pairs of an NSDictionary. The following are examples of how you
use this syntax to assign values to constant NSStrings, NSArrays, and
NSDictionaries in WebScript:

myString = @"hello world";

myArray = @("hello", "goodbye");

myDictionary = @{"key" = 16};

anotherArray = @(1, 2, 3, "hello");

aDict = @{ "a" = 1; "b" = "hello world"; "c" = (1,2,3);
"dt={"x"=1;"r"=2}}

"The following rules apply when you use this syntax to create constant objects:

¢ The value you assign must be a constant (that is, it can’t include variables).
For example, the following is not allowed:

/I This is not allowed!!
myArray = @("hello", aVariable);

Using WebScript

The WebScript Language

* You shouldn’t use @ to identify NSStrings, NSArrays, or NSDictionaries
inside the value being assigned. For example:

/I This is not allowed!!
myDictionary = @(@"value" = 3);

/I Do this instead
myDictionary = @("value" = 3);

For more information on NSStrings, NSDictionaries, and NSArrays, see the
chapter “A Foundation for WebScript Programmers: Quick Guide to Useful
Classes.”

Writing Your Own Methods

You can write your own methods in WebScript. The methods you write can be
associated with one of two types of objects: the WOWebScriptApplication
object that’s automatically created when you run your script, or a
WOWebScriptComponentController object that’s associated with a particular
grouping of a script, an HT'ML template, and a declarations file (for more
information, see the section “T'he Role of Scripts in a WebObjects
Application”). When you write your own methods, you're effectively extending
the behavior of the object associated with the script.

You implement WOWebScriptApplication methods in the application script.
You implement WOWebScriptComponentController methods in a component
script—that is, a script that has a corresponding HTML template and
declarations file. This grouping of three files most commonly maps to a single,
dynamically generated HTML page, but this isn’t always the case—a
component can also represent just a portion of a page.

"To define a new method, simply put its implementation in the appropriate
application or component script file. You don’t need to declare it ahead of time.
For example, the following method addFirstvalue:toSecondvalue: adds one value to
another and returns the result:

- addFirstValue:firstValue toSecondValue:secondValue {
id result;
result = firstValue + secondValue;
return result;

}

In this example, note the following:

¢ There is no type information supplied for the method’s arguments and return
types. These types are assumed to be (and must be) id, and if you supply any
type information, you will get an error.

Using WebScript

The WebScript Language

/I This is fine.
- aMethod:anArg {

/I NO!! This won't work.
- (void) aMethod:(NSString *)anArg {

/I This won't work either.
- (id)aMethod:(id)anArg {

¢ 'This method returns a value, stored in result. If a method doesn’t return a
meaningful value, you don’t have to include a return statement (and, as stated
above, even if a method returns no value you shouldn’t declare it as returning
void).

"To invoke the addFirstvalueitoSecondvalue: method shown above from another
method in the same script, you’d simply do something like the following:

id sum, vall = 2, val2 = 3;
sum = [self addFirstValue:vall toSecondValue:val2];

"To access the method from another script, you’d first return the page associated
with the script in which the method is implemented. You’d then ask the page
object to perform the method:

id sum, vall = 2, val2 = 3;

/I Get the page in which the method is implemented

id computePage = [WOApp pageWithName:@"Compute"];

/I Send the page object to perform the method

sum = [computePage addFirstValue:vall toSecondValue:val2];

The pagewithName: method is discussed in more detail in the section “Accessing
and Sharing Variables.”

What is self?

In WebScript, self is available in every method. It refers to the object (either the
WOWebScriptApplication object or the WOWebScriptComponentController
object) associated with a script. When you send a message to self, you’re telling
the object associated with the script to perform a method that’s implemented in
the script. For example, suppose you have a script that implements the method
giveMeARaise. From another method in the same script you could invoke
giveMeARaise as follows:

[self giveMeARaise];

"This tells the WOWebScriptApplication or
WOWebScriptComponentController object associated with the script to
perform its giveMeARaise method.

Using WebScript Using WebScript in a WebObjects Application

Using WebScript in a WebObjects Application

"T'his section discusses using WebScript in the context of a WebObjects
application. For a detailed discussion of the structure of a WebObjects
application, see the chapter “Getting Started.”

The Role of Scripts in a WebObjects Application

In developing WebObjects applications, you usually write your business logic as
compiled Objective-C code (though you can write entire applications using just
WebScript). You then use WebScript to provide your “interface logic.” A
WebScript script typically includes the following ingredients:

Variable declarations

¢ The instantiation of objects that get bound to HI'ML elements
Action methods that define a response to user actions

Logic for performing page navigation

In most cases, a script has a corresponding declarations file and HTML
template. The declarations file provides a mapping between the actions and
variables defined in the script, and the HTML elements that will be
dynamically generated and then substituted in the HTML template. T'he three
files in a group have the same base name but different extensions; for example,
Main.wos (script), Main.wod (declarations), and Main.html (template). These
application resources are used by a corresponding
WOWebScriptComponentController to prepare responses to user requests.
Most commonly a WOWebScriptComponentController represents a single page
in a WebObjects application, though it can also represent just a portion of a page.

In a WebObjects application you generally put each group of three files (the
script, the declaration, and the HT'ML template) into a directory that has the
same base name and the extension .wo. So, for example, you can have a directory
Main.wo that contains the files Main.wos, Main.wod, and Main.html. Each group of
three files is called a component. The script associated with a component (in this
example, Mainwos) is called a component script.

Using WebScript

Using WebScript in a WebObjects Application

10

Main.wo

Main.html Main.wod Main.wos
Figure 6. The Contents of a Component Directory

The Application Script

Often, in addition to having multiple components (that is, subdirectories that
contain a script, a declarations file, and an HTML template), a WebScript
application also has an application script. 'This script is where you declare and
initialize global and session variables. For more information on global and
session variables, see the section “Variables and Scope.”

The application script has the name Application.wos, and it resides immediately
under the application directory.

Visitors Example

"To explain how a WebScript operates within the larger context of a WebObjects
application, this section uses the Visitors application as an example. The Visitors
application takes the name of the current visitor, and displays the most recent
visitor as well as the total number of visitors to the page:

Using WebScript Using WebScript in a WebObjects Application

Visitors

To recard vour wisit, please enter vour name below:

submit .

HMumber of wsitors to this page: 8

Most recent wisitor: Thibault

Figure 1. The Visitors Example

The Visitors application includes the following directories and files:

[Visitors
Application.wos
/Main.wo

Main.html
Main.wod
Main.wos

"To view the contents of Mainwod and Main.html, see the on-line Visitors example.
"The contents of Application.wos and Main.wos are listed in the following sections.

Application.wos

Application.wos is the application script for the Visitors application. It declares two
global variables: visitorNum and lastVisitor. Global variables can be accessed
throughout the application, and they live for the duration of the application. For
more information on global variables, see the section “Variables and Scope.”

id lastVisitor;
/I the most recent visitor
id visitorNum;
/I the total number of visitors the page

11

Using WebScript

Using WebScript in a WebObjects Application

12

- awake {
/I Obsolete sessions that have been inactive for more than 2 minutes
[WOApp setSessionTimeOut:120];
visitorNum = 0;

}

Using the awake Method

"The Application.wos script includes a method called awake. In an application or
component script, it’s common to implement an awake method to prepare the
associated page and its variables for use during the processing of the page.

Fora given page, the awake method is invoked exactly once for each transaction.
If the same page handles the request as well as generates the response (for
example, the first page of an application), the awake method is only invoked
during the request phase.

The awake method is the best place to initialize variables whose values remain
static for the life of the page, such as a list of hyperlinks. The advantage of using
awake to perform this type of initialization is that the variables are guaranteed to
be initialized every time the page is displayed.

Main.wos

The script associated with the first (and in this example, only) page of the
Visitors application is Main.wos. This script increments the number of visitors to
the page (visitorNum), and assigns the name (aName) entered in the application’s
text field to the last visitor (lastVisitor). It then clears the text field by assigning an
empty string to aName.

id number, aName;

- awake {
if (Inumber) {
number = [WOApp visitorNum];
number++;
[WOApp setVisitorNum:number];
}
return self;
}
- recordMe
{
if ((aName length]) {
[WOApp setLastVisitor:aName];
[self setAName:@"1; // clear the text field
}
}

The concepts introduced by this example application are discussed in the
following sections

Using WebScript

Using WebScript in a WebObjects Application

Variables and Scope

In WebScript, the scope of variables depends on where and how you declare
them. The notion of scope in WebScript really encompasses two different ideas:
a variable’s visibility and its lifetime.

"T'he simplest kind of variable in WebScript is a local variable, which is declared
inside a method as follows:

- aMethod {
id localVar;
x5

}

Local variables have no visibility outside the method in which they’re declared,
and no lifetime beyond the method’s execution. For this reason, they’re the only
type of variable that can’t be referenced in a declarations file.

All other variables have some degree of persistence within your application. To
understand the role of these variables, it’s useful to think about the flow of
activity in a WebObjects application. The life of a WebObjects application is
marked by the continual recurrence of requests (such as a user clicking a control
to initiate an action), and the subsequent respoznses (such as the server returning
a dynamically generated HTML page in response to a request). A request-
response cycle is called a transaction. Processing and variable scoping in a
WebObjects application is organized around transactions.

Non-local variables behave differently depending on whether they’re declared
in an application script (where they’re called global and session variables) or in
a component script (where they’re called transaction and persistent variables).

Global variables

Global variables can be accessed from all pages of an application, and they last
for the duration of an application. A global variable is available across all sessions,
and there is one copy of the variable per application. Global variables are
declared in the application script outside a method as follows:

id globalVvar;

Session Variables

Whereas all users of an application see a global variable with the same value,
each session has its own version of session variables. A variable with session
scope lasts for the duration of a session. A session represents a browser (user)
accessing a WebObjects application, which could be serving multiple users. A
session is initiated when a browser (single user) connects to a WebObjects
application, at which time the session is assigned a unique identifier. This

13

Using WebScript

Using WebScript in a WebObjects Application

14

session ID is embedded in the URLs of the pages associated with the
application. The session ID lasts as long as the session is valid. A session is
terminated either when the user quits out of his or her browser, or when the
application explicitly times the session out. For more information on session
time out, see the section “Setting Session TimeOut” in the chapter “Managing
State.”

A session variable is accessible from every component script. Its value is stored
and restored at the beginning and the end of each request/response cycle. There
is one copy of the variable per user session. Session variables are declared in the
application script outside a method as follows:

session id sessionVar;

Note that because the WOWebScriptApplication object owns global and session
variables, in a component script you access those variables by sending a message
to the application:

id value = [WOApp mySessionVariable];
[WOApp setMyGlobalVariable:newValue];

Transaction Variables

A transaction variable is declared in a component script outside a method, as
follows:

id myVar;

A variable with transaction scope lasts for the duration of a transaction, or
HTML request. A transaction is defined as a request coming in and a response
(usually an HTML page) going out. By the time the response is returned to the
client, the variable’s value is no longer preserved. Transaction variables are
visible to all of the methods within the script in which they’re declared.

Persistent Variables

A persistent variable is declared in a component script outside a method using
the persistent keyword, as follows:

persistent id myVar;

A persistent variable remains valid for a particular page for the duration of a
session. It is stored right before a response is generated for a user request and
restored when the client performs an action on the new page.

Whenever possible, you should refrain from using session and persistent
variables since they tend to degrade performance. It’s preferable to

Using WebScript

Using WebScript in a WebObjects Application

programmatically recreate variables in the script’s awake method instead of
declaring them as session or persistent, for example:

id myLinks; // just use a regular transaction variable...

/I ... then re-initialize it in the script's awake method

- awake {
myLinks = @("My Autobiography", "Pictures of my Dog");
return self;

}

There are two cases in which you should use session and persistent variables:

¢ [fyou need to save a variable whose value can be modified (that is, if the
variable’s value can’t be restored in awake by making a static assignment).

e Ifinitializing a variable requires an expensive operation that shouldn’t be
performed unnecessarily, such as fetching rows from a database. However, if
the variable represents a large amount of data, the cost of storing that data has
to be weighed against the cost of recreating it

Remember: Pages Aren't Persistent!

It’s important to remember that pages aren’t persistent in an application. They
are created at the beginning of a transaction, and they disappear at the end. The
life of a page actually spans two transactions:

1. First, the WOWebScriptComponentController associated with the page
generates a response for a given request.

2. The WOWebScriptComponentController then handles the subsequent
incoming request (such as a request triggered by a user clicking on a
hyperlink).

Between these two occurrences, the WOWebScriptComponentController
associated with a page is destroyed and reconstructed. Any variables in your
application that aren’t declared as persistent, session, or global are lost.
Consequently, variables whose values the page depends on need to be either
made persistent or recreated in awake. The preferred approach is to recreate
them in awake, as described in the preceding section.

There is one significant exception to the general statement that pages aren’t
persistent. If an application has caching enabled (which can be achieved either
by running the application from the command line with the -c option or by using
WOApplication’s setCachingEnabled: method), transaction variables will behave
exactly like global variables. In other words, users could potentially see
transaction variables with the values assigned to them by other users. For this

15

Using WebScript

Using WebScript in a WebObjects Application

16

reason, it’s good practice to reinitialize transaction variables in your script’s awake
method.

Variables and Scope: a Summary

The following table summarizes the different types of variables in WebScript:

Variable Type Where It's Declared

How You Declare It

Where It’s Visible

How Long It Lives

Local Inside amethod in either id myVar; Only inside the method For the duration of the
an application or a com- in which it's declared method
ponent script
Transaction Outside a method in a id myVar; Inside the scriptin For the duration of a
component script which it's declared transaction, which is
defined as a request
cominginand a
response (usually an
HTML page) going out
Persistent Outside a method in a persistent id myVar; Inside the scriptin For the duration of a
component script which it's declared session
Session Outside amethod inan session id myVar; In the application script. For the duration of the
application script Component scripts can session
access session vari-
ables by messaging the
application. Every ses-
sion has its own version
of a session variable.
Global Outside amethodinan id myVar; In the application script. For the duration of the
application script Component scripts can application
access global variables
by messaging the appli-

cation. Every session
sees global variables
with the same value.

Accessing and Sharing Variables

WebScript automates the process of accessing non-local variables, whether
they’re declared in an application script or in a component script. For a non-local
variable myVar, for example, you can set and return its value from the script that
declares it, as follows:

[self myVar];
[self setMyVar:newValue];

You don’t have to implement these methods to invoke them—WebScript does
this work behind the scenes. For example, you may notice that the Visitors

Using WebScript

Using WebScript in a WebObjects Application

Application.wos script doesn’t implement visitorNum, setVisitorNum:, or setLastVisitor:
methods, yet the Main.wos script invokes them.

In these statements:

[self myVar];
[self setMyVar:newValue];

the myVar and setMyVar: messages are sent to self, which indicates that the variable
myVar is declared in the script that’s accessing it. Sometimes a component script
has to access global or session variables declared in the application script. When
you work with global and session variables, remember that they’re owned by the
application object WOWebScriptApplication. 'To set or return their values, you
send a message to the WOWebScriptApplication object. For example, the
Main.wos script in the Visitors example includes these statements:

number = [WOApp visitorNum];
[WOApp setVisitorNum:number];
[WOApp setLastVisitor:[WOApp aNamel]];

WOApp refers to the application object. The global variable WOApp is short for
the following statement:

[WOApplication sharedInstance];

"T'his statement returns the single WOWebScriptApplication object that’s
accessed by all users of an application.

You can also access a non-local variable declared in one script from another
script. This is something you commonly do right before you navigate to a new
page, for example:

id anotherPage = [WOApp pageWithName:@"Hello";
[anotherPage setNameString:newValue];

"T'he current script uses the statement [anotherPage setNameString:newValue];
to set the value of nameString, which is declared in the page entitled “Hello”.

"T'his example uses the pageWithName: method, which takes the name of a page as
an argument and returns that page. You most commonly use pageWithName: inside
a method that returns a new page for display in the browser. Such a method
could be associated with a hyperlink or a submit button. For example:

- contactPsychicNetwork

{
id nextPage;
nextPage = [WOApp pageWithName:@"Predictions'];
return nextPage;

}

17

Using WebScript

WebScript Language Summary

WebScript Language Summary

18

This section summarizes the WebScript language.

Reserved Words
WebScript includes the following reserved words:

if

else

for

while

id

break
continue
nil
YES/NO
persistent
session
action

Statements

WebScript supports the following statements:
if

else

for

while

break

continue
return

In WebScript these statements behave as they do in the C language.

Arithmetic Operators

WebScript supports the arithmetic operators +, -, /, *, and %. The rules of
precedence in WebScript are the same as those for the C language. You can use
these operators in compound statements such as:

b = (1.0 + 3.23546) + (((1.0 * 2.3445) + 0.45 + 0.65) - 3.2);

Logical Operators

WebScript supports the negation (1), AND (&&), and OR (ll) logical operators.
You can use these operators as you would in the C language, for example:

if (1(la]l a&&) || (a && b) && (c || a && (b+3))) i=0;

Using WebScript

WebScript Language Summary

Relational Operators

WebScript supports the relational operators <, <=, >, >=, ==, and !=. In
WebScript these operators behave as they do in C.

Increment and Decrement Operators

WebScript supports the ++ and -- operators. These operators behave as they do
in the C language, for example:

Il Use myVar as the value of the expression and then increment myVar
myVar++,

/I Increment myVar and then use its value as the value of the expression
++myVar,

id

WebScript supports only one data type: objects (ids). The id type is defined as a
pointer to an object—in reality, a pointer to the object’s data (its instance
variables). Like a C function or an array, an object is identified by its address. All
objects, regardless of their instance variables or methods, are of type id.

self

In WebScript, self is available in every method. It refers to the object (either the
WOWebScriptApplication object or the WOWebScriptComponentController
object) associated with a script. When you send a message to self, you’re telling
the object associated with the script to perform a method that’s implemented in
the script.

persistent

"The persistent keyword is used in a component script to identify a variable whose
state is maintained for the duration of the current session (as opposed to
transaction variables, which cease to exist at the end of a transaction).

session

"The session keyword is used in an application script to identify a variable whose
state is maintained for the duration of an application, and of which every session
has its own version (as opposed to a global variable, which has the same value in
all sessions).

action

"The action keyword is used in a child component script to identify a WOAction
object that the parent component associates with a method.

19

Using WebScript What Are the Origins of WebScript?

What Are the Origins of WebScript?

WebScript is an interpreted language that uses a subset of Objective-C syntax.
Objective-C is an object-oriented language that adds extensions to the C
language.

You do not need to know Objective-C to use WebScript or to write WebObjects
applications. However, if you’re interested in learning more about the
Objective-C language, sece NEXTSTEP Object-Oriented Programming and the
Objective-C Language.

A Note to Objective-C Developers

WebScript uses a subset of Objective-C syntax, but its role within an application
is significantly different. The following table summarizes some of the

differences.

Objective-C WebScript

Is compiled Is interpreted

Supports primitive C data types Only supports the id data type

Requires method prototyping Doesn't require method prototyping (that is, you
don't declare methods before you use
them)

Usually includes a .h and a .m file Usually has corresponding declarations and
HTML template files (unless it is an application
script)

Supports all C language features Has limited support for C language features; for
example, doesn’t support structures, pointers,
enumerators, or unions

Methods not declared to return void must Methods aren't required to include a

include a return statement return statement

Has preprocessor support Has no preprocessor support—that is, doesn’t

support the #import or #include statements

20

Using WebScript

A Note to Objective-C Developers

Perhaps the most significant difference between Objective-C and WebScript is
that in WebScript, the only valid data type is id. Some of the less obvious
implications of this are:

® You can’t use methods that take non-object arguments (unless those
arguments are integers or floats, which WebScript converts to NSNumbers).
For example, in WebScript the following statement is invalid:

/I NO!! This won't work.
string = [NSString stringWithCString:"my string"];

® You can only use the “at sign” character (@) as a conversion character with
methods that take a format string as an argument:

/I This is fine.
[self logWithFormat:@"The value is %@", myVar];

/I NO! This won't work.
[self logWithFormat:@"The values are %d and %s", varl, var2];

® You shouldn’t supply any type information for a method’s arguments and
return types. These types are assumed to be id, and if you supply any type
information, you will get an error.

/I This is fine.
- aMethod:anArg {

/I NO!! This won't work.
- (void) aMethod:(NSString *)anArg {

/I This won't work either
- (id)aMethod:(id)anArg {

® You need to substitute integer values for enumerated types.

For example, suppose you want to compare two numeric values using the
enumerated type NSComparisonResult. This is how you might do it in
Objective-C:

result = [numl1 compare:num2];
if(result == NSOrderedAscending)/* This won't work in WebScript */
/* numl is less than num2 */

But this won’t work in WebScript. Instead, you have to use the integer value
of NSOrderedAscending, as follows:

result = [num1 compare:numz2];
if(result == -1)
/* numl is less than num2 */

21

Using WebScript A Note to Objective-C Developers

For a listing of the integer values of enumerated types, see the “Iypes and
Constants” section in the Foundation Framework Reference.

22

